

Offshore precipitation climate How can we monitor?

Raingauges

Weather radars

Workshop on Main Factors for Leading Edge Erosion DTU Wind Energy (Risø Campus), 22 February 2018 Flemming Vejen, DMI

Offshore precipitation climate, definition of erosion classes

Overall objectives of activities at DMI:

- To increase knowledge about offshore prepitation climate (especially interested in frequency of hail and heavy rain), i.e. erosion climate
- To develop methods for short term prediction of eroding conditions

This presentation will focus on *MEASUREMENT TECNIQUES* How can we establish the required data series for the analyses to be carried out?

One approach is to establish point measurements of drop size distribution

	parameter	Parcivel ²
	Precip type	Х
	Reflectivity	Х
	Rain rate	Х
	Rain amount	
	Energy of precipitation	Х
	DSD	Х
	Fall speed spectrum	Х
	Thiess	Parcivel ²
A d	drawback mig isdrometers are	ht be, that e point data

Representativeness??

Alternative approach: Spatial info from weather radar data

Parameters we can calculate from radar data

- Rain rate
- Duration of "impact"

Hydrometeor type

'

Can we estimate kinetic energy and potential erosion from radar data?

DMI's radar network:

- 5 dual-polarization radars
- Resolution: 5-10 min, 500 m pixels
- (1 minute, interpolation between radar frames)

About the conversion between radar Z and rain rate R

Radar reflectivity is related to number of drops n and diameter D in 6'th power:

$$Z = \sum n_i D_i^6$$

Using a standard Z-R relation results in biased conversion between Z and R

Widely used method: Adjustment of radar data using raingauges

Sources of error on radar data and radar QPE

QPE = *Quantitative Precipitation Estimate*

Uncertainty of radar QPE comes from two aspects: bias and noise

Errors of radar data:

- False echoes
- Radar beam propagation issues
- Melting layer (bright band)
- Blocking/shielding
- Beam broadening

Errors of raingauge data:

- wind induced bias
- Uncertainty related to radarraingauge adjustment

Estimation of radar rain parameters

Relative rain-rate from radar images -adjustment against raingauges

QPE-model

Spatial distribution of rain

Adjusted time series

1-minute resolution

Calculation of offshore statistics based on radar data

Relationship between drop size disdribution and rain rate:

In practice more convinient to use radar rain rates for calculation of kinetic energy and erosion class

Calculation of radar rain-rates:

- Along coast line of Jutland
- Study rain rate frequency/PDF's

Preliminar near offshore rain rate frequency, June-August 2017

- Relatively small spatial differences in rain rate for stratiform rain
- Low frequency of high rain rates (convective rain)
- But even a few hours of very high rain rates in combination with strong wind may cause blade erosion
- Largest rain rates may be related to false echoes in radar data

Precipitation type (10-min resolution) at DMI weather stations, 2017

t	уре	intensity	offshore	inland	
	drizzle	<u>slight</u>	3197	1162	
d		moderate	3327	374	
		heavy	82	38	
	rain	slight	7987	11433	
Ľ		moderate	1325	1715	
		heavy	147	226	٦
ra	ain	violent	0	8	J
	rain/snow	slight	83	248	
		moderate	5	7	
	snow	slight	575	1889	
S		moderate	0	935	
f	rezzing rain	all	35	135	١
ic	e pellets	all	24	26	
s	now grains	all	14	0	
h	ail	all	3	1	J

- Very few hail observations!
- Heavy/violent rain accounts for 0.9-1.4 % of all observations (≈ 25-39 hours)
- Freezing rain/ice pellets/snow grains: 0.4-1.0 % of all observations (≈ 13-27 hours)

Closing remarks

Further work and improvement:

- Improve model for calculation of radar rain rates + establish long data series
- Evaluate radar rain-rates against independent data
- Include radar hydrometeor classification in analyses
- Evaluate hydrometeor classification against disdrometers/weather stations
- Study historical (violent) events to further develop ideas/models
- Establish offshore rain climate statistics
- Develop model for calculation of potential risk of erosion

Acknowledgements to Innovation Fund Denmark for support to the EROSION project Sagsnummer: 6154-00018B

Thank you for your attention!